C memory model

Lecture 03.02

Outline

 Memory of a single process
Globals and stack

Constants

Heap for dynamic allocation

Constants

Globals

Memory memorizer

* Each process receives an address space, and allocates
memory segments for different purposes

The smallest address (0) is reserved to represent NULL

Codle sagmeant stores program code (we can also have
pointers to places in code — function pointers)

* Constants stores all the constants. This memory is read-
only

* Globals stores global variables — variables visible to all
functions

* Stack stores variables of a currently executing function
* Heap is reserved for dynamic memory allocation

Memory memorizer

Constants stores all the constants. This memory is read-only

5

Gzlobals stores global variables — variables visible to all
functions

Stack stores variables of a currently executing function

Heap is reserved for dynamic memory allocation

Stack variables, automatic
variables, temporary variables
-l |1 | | | smx

int factorial(int n) {
if(n<=1) {
return 1;
} else {

return n * factorial(n - 1);

}
}

int main () {
intn=3;
int f = factorial (n);

Stack frames

factorial

n: 1

M All n’s are

factorial different

n:2 - variables and
factorial ' have their own

n:3 <« | address

) |
main

n:3

/

Stack variables, automatic
variables, temporary variables
-l |1 | | | smx

int factorial(int n) {
if(n<=1) {
return 1;
} else {

return n * factorial(n - 1);

}
}

int main () {
intn=3;
int f = factorial (n);

This n does not
exist after
Stack frames function returns

~

tori

n:
1
factorial

n: 2

factorial
n:3

main
n: 3

Global variables
| | _4w»cloBass | |

int depth = 0;
int factorial(int n) { variable depth exists
depth++; in the same address
: space through the
if(n <=1) entire program
return 1;
else

return n * factorial(n - 1);

}

int main () {
intn=3;
int f = factorial (n);
printf (“%d!=%d recursion depth=%d\n”, n,f,depth);

Static variables
=11 Tleoss 1L

void print_plus () {
inta=10;

static int sa = 10;
a+=5;
sa+=5;

printf("a = %d, sa = %d\n", a, sa);

} A static variable inside a
function keeps its value
int main() { between invocations, but
int i; unlike global variable is
for (i = 0; i < 10; ++i) invisible to other functions

print_plus();

Three-card trick

#include <stdio.h>

int main() {
char *cards = "JQK";
char a_card = cards|[2];

Where is the Queen?

cards[2] = cards[1];

cards[1] = cards[0];

cards[0] = cards[2]; What is printed?
cards[2] = cards[1];

cards[1] = a_card;

puts(cards);

return O;

Compile and run: Linux

¢ gcc -o trick trick.c && ./trick

bus error

* On different machines and operating systems:

trick.exe has stopped working

segmentation error

segmentation fault

What do you think the problem is?

The string can’t be updated
We’re swapping characters outside the string

The string isn’t in memory

o N ® P

Something else

String literals live in a different
place: constants

ST Jowms

READ|ONLY !

char *cards = "JQK";

* We cannot update string “JQK” through pointer cards

String literals cannot be updated
|| o[| cards |

* When the computer loads the program into memory, it puts
all of the constant values—like the string literal “JQK” —into
the constant memory block. This section of memory is read
only.

* The program creates the cards pointer variable on the stack.
The cards variable will contain the address of the string
literal “JQK.”

 When the program tries to change the contents of the string
pointed to by the cards variable, it can’t: the string is read-
only.

Why compiler did not warn us?

* Because we declared the cards as a simple char *, the compiler didn’t
know that the variable would always be pointing at a string literal.

* To avoid this problem never write code that sets a simple char pointer to
a string literal value like:

char *s = "Some string";

* There’s nothing wrong with setting a pointer to a string literal - until you
try to modify a string literal. Instead, if you want to set a pointer to a
literal, use the const keyword:

const char *s = "some string";

* That way, if the compiler sees some code that tries to modify the string,
it will give you a compile error:

s[0] ='S';

trick.c:7: error: assignment of read-only location

Fix: copy literal into char array

cards
| | a0 | | | waKo
char cards[] = "JQK"; Make a copy of the string in a
section of memory that can be

amended

* Now cards is not a pointer. Cards is now an array, which lives on the
stack. It is filled with copies of characters from the constant when the
stack frame for main is loaded

 It’s probably not too clear why this changes anything. All strings are
arrays. But in the old code, cards was just a pointer.

* In the new code, it’s an array. If you declare an array called cards and
then set it to a string literal, the cards array will be a completely new
copy. The variable isn’t just pointing at the string literal. It’s a brand-
new array that contains a fresh copy of the string literal.

Again: array is not exactly a
pointer

* An array name is a constant address, while a pointer is a
variable:

int x[10], *px;
pX = X; px++; /** valid **/

X = px; Xx++; /** invalid, cannot assign a new value **/

e Also, defining the pointer only allocates memory space for

the address, not for any array elements, and the pointer
does not point to anything.

* Defining an array (x[10]) gives a pointer to a specific place in

memory and allocates enough space to hold the array
elements.

pcards:

Summary: e I

char * vs. char []

JQK\0
acards:

* There is an important difference between these definitions:
char acards[] = “JQK"; /* an array */
char *pcards = “JQK"; /* a pointer */

* acards is an array, just big enough to hold the sequence of
characters and '\0’. Individual characters within the array
may be changed but acards will always refer to the same
storage.

e pcards is a pointer, initialized to point to a string constant;
the pointer may subsequently be modified to point
elsewhere, but the result is undefined if you try to modify
the string contents.

Stack storage

* Most of the memory we used so far has been in the stack.

e The stack is the area of memory that’s used for local
variables.

* Each piece of data is stored in a variable, and each variable
disappears as soon as you leave its function.

Example: returning an array

* You can't say:

int *f() {
int a[10];

return(a);

}

* because that 'a' array is deallocated as the function
returns.

Dynamic storage
] |1 f{ | e [

* We not always know how much memory we need in
advance

* We need to be able to demand and get the memory
dynamically, at the point when we need it

 Dynamic memory is allocated on the heap

First, get your memory with
malloc()

* Imagine your program suddenly finds it

has a large amount of data that it needs
to store at runtime. This is a bit like

o
asking for a large storage locker for the 1\&&65\0@“0 e
data: malloc() > 6,6@'5;%5%0
Q)
You tell the malloc() function exactly how bﬁe’éﬂ’

much memory you need, and it asks the
operating system to set that much
memory aside in the heap

The malloc() function then returns a
pointer to the new heap space, a bit like
getting a key to the locker

Give the memory back when
you're done

* The good news about heap memory is that you can keep hold of it for a
really long time. The bad news is...you can keep hold of it for a really long
time

* With the stack, you didn’t need to worry about returning memory; it all
happens automatically: every time you leave a function, the local storage
is freed

* The heap is different. Once you’ve asked for space on the heap, it will
never be available for anything else until you explicitly free it.

* There’s only so much heap memory available, so if your code keeps
asking for more and more heap space, your program will start to develop
memory leaks

-ree memory by calling the free()
function

 The malloc() function allocates space and gives you a
pointer to it

* You'll need to use this pointer to access the data and then,
when you’re finished with the storage, you need to release
the memory using the free() function.

* It’s a bit like handing your locker key back to the attendant
so that the locker can be reused.

g Viag 5 Thanks for the
g 509t storage. I’'m done
’204 Oca['/' . .
»S53 ~On with it now

(9 On U’e

free for each malloc

* Every time some part of your code requests heap storage
with the malloc() function, there should be some other part
of your code that hands the storage back with the free()

function.

 When your program stops running, all of its heap storage
will be released automatically, but it’s always good practice
to explicitly call free() on every piece of dynamic memory
you’ve created.

Array as a return value

e Return a pointer to malloc'd memory if you want to return an
array:

int *f() {
int *a; int *f() {
if ((a = malloc(10 * sizeof(int))) == NULL)

return(a);

}

* Because the malloc'd memory persists until free() is called on
the pointer - its existence is not tied to the duration of the
execution of the function.

Example: creating and returning
copy of the string

/*Given a C string, return a heap-allocated copy of the string.

Allocates a block on the heap of the appropriate size, copies the string into the block,
and returns a pointer to the block.

The caller takes over ownership of the block and is responsible for freeing it.*/

char* string_copy (const char* string) {
char* newString;
int len;
len = strlen(string) + 1; // +1 to account for the "\0'
newString = malloc(sizeof(char)*len); // elem-size * number-of-elements

strcpy (newString, string); // copy the passed-in string to the block
return(newsString); // return a ptr to the block

Summary: heap memory

Heap memory provides greater control for the programmer
— the blocks of memory can be requested in any size, and
they remain allocated until they are deallocated explicitly.

Heap memory can be passed back to the caller function
since it is not deallocated on exit

Heap memory is allocated at run time

malloc() and free()

Exercise malloc and strings

